skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rego, Joshua D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Artificial intelligence (AI) and its teaching in the K-12 grades has been championed as a vital need for the United States due to the technology's future prominence in the 21st century. However, there remain several barriers to effective AI lessons at these age groups including the broad range of interdisciplinary knowledge needed and the lack of formal training or preparation for teachers to implement these lessons. In this experience report, we present ImageSTEAM, a teacher professional development for creating lessons surrounding computer vision, machine learning, and computational photography/cameras targeted for middle school grades 6-8 classes. Teacher professional development workshops were conducted in the states of Arizona and Georgia from 2021-2023 where lessons were co-created with teachers to introduce various specific visual computing concepts while aligning to state and national standards. In addition, the use of a variety of computer vision and image processing software including custom designed Python notebooks were created as technology activities and demonstrations to be used in the classroom. Educational research showed that teachers improved their self-efficacy and outcomes for concepts in computer vision, machine learning, and artificial intelligence when participating in the program. Results from the professional development workshops highlight key opportunities and challenges in integrating this content into the standard curriculum, the benefits of a co-creation pedagogy, and the positive impact on teacher and student's learning experiences. The open-source program curriculum is available at www.imagesteam.org. 
    more » « less
  2. null (Ed.)
    Lensless imaging is a new, emerging modality where image sensors utilize optical elements in front of the sensor to perform multiplexed imaging. There have been several recent papers to reconstruct images from lensless imagers, including methods that utilize deep learning for state-of-the-art performance. However, many of these methods require explicit knowledge of the optical element, such as the point spread function, or learn the reconstruction mapping for a single fixed PSF. In this paper, we explore a neural network architecture that performs joint image reconstruction and PSF estimation to robustly recover images captured with multiple PSFs from different cameras. Using adversarial learning, this approach achieves improved reconstruction results that do not require explicit knowledge of the PSF at test-time and shows an added improvement in the reconstruction model’s ability to generalize to variations in the camera’s PSF. This allows lensless cameras to be utilized in a wider range of applications that require multiple cameras without the need to explicitly train a separate model for each new camera. 
    more » « less